
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Prompt Structuring in Gemini AI Using Set Theory,

Logic, and Relations

Reynard Nathanael - 13524103

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: reynardnathanael11@gmail.com , 13524103@std.stei.itb.ac.id

Abstract—Effective prompt engineering is crucial for

leveraging Large Language Models (LLMs) like Gemini AI, yet

conventional methods often lack precision for complex generative

tasks. This paper introduces a systematic prompt construction

methodology founded on set theory, logic, and relations. Using a

framework that decomposes intricate task requirements into

distinct, universal categories, formally defining their elements

and interrelationships. Through an empirical evaluation with

Gemini AI, comparing intuitive prompts against those designed

using this structured approach, to demonstrate its efficacy. The

results consistently show that structured prompts yield

significantly more precise, consistent, contextually relevant, and

role-aligned outputs. By refining control over the AI’s output

generation, this method enhances response consistency and

contributes to the development of prompt engineering as a more

methodical and evidence-driven practice.

Keywords— Prompt engineering; Set theory; Gemini AI;

Prompt design.

I. INTRODUCTION

Generative Artificial Intelligence (Generative AI) such as
Gemini AI, offers remarkable capabilities in understanding,
processing, and automatically generating relevant output. This
form of AI demonstrates vast potential, ranging from content
creation and information retrieval to task automation.
However, to fully harness its capabilities, prompt engineering
has become essential. It is the technique of crafting effective
instructions to elicit relevant and high-quality responses. The
quality and relevance of AI-generated outputs heavily depend
on the clarity, precision, and structure of the prompt provided.

Unfortunately, as the complexity of tasks assigned to AI
increases, conventional prompting approaches often fail to
identify the internal and external relationships between
instructional elements, leading to ambiguous, inefficient
prompts that result in suboptimal responses. This issue
highlights the need for more advanced frameworks for prompt
construction, aimed at formalizing the relationships among
prompt components and minimizing ambiguities that hinder
effective AI responses.

Set theory, logic, and relations in discrete mathematics
offer essential tools for modeling the structural complexity of
prompts, making it a key asset in generative AI analysis. Set
theory enables us to define a prompt as a collection of discrete
elements; logic provides rules to bind instruc tions and

conditions; while relations allow the user to model the
interconnections between different parts of a prompt. In the
context of generative AI, a prompt may include various
instructions, constraints, and contextual elements. The
application of these mathematical theories opens up systematic
methods for decomposing complexity, identifying
redundancies or conflicts, and offering actionable insights for
prompt optimization.

The research in this paper aims to demonstrate the
application of set theory, logic, and relations in optimizing
prompt structure and improving interaction analysis with
generative AI, particularly Gemini AI. This study seeks to
simplify complex networks of instructions within a prompt,
uncover logical, and hierarchical relationships between its
components, and identify opportunities for crafting more
precise and efficient prompts through the construction of
mathematical models. This model-based approach offers
actionable insights for prompt engineering practitioners,
supporting better decision-making and more effective
interaction management with generative AI systems.

II. THEORETICAL FRAMEWORK

2.1 Set

A set is an unordered collection of distinct objects,

known as elements or members. The order of elements

within a set is not important, and repeated elements are

counted only once, unless it is specifically referred to as

a multiset.

 In this context, a prompt can be viewed as a set of

keywords, instructions, or constraints. Set notation

typically employs capital letters, such as A={e1,e2,...,en

}, where ei are the elements of the set. An object

belonging to a set is referred to as an element (∈).

The following are the fundamental set operations

relevant to prompt structuring:

• Subset (⊆): A set A is a subset of set B if every

element in A is also an element in B.

• Union (∪): This operation yields a set containing all

elements that are in at least one of the given sets.

mailto:reynardnathanael11@gmail.com
mailto:13524103@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

• Intersection (∩): This operation yields a set

containing all elements common to all given sets.

• Difference (− or ∖): This operation yields a set

containing the elements of the first set that are not in

the second set.

• Complement (Ac or A’): This is the set of all

elements in the universal set U that are not in A.

2.2 Logic

Logic provides a formal system for reasoning and

deriving conclusions from premises. In prompt

structuring, it allows for the precise definition of

instructions, conditions, and constraints, ensuring that the

AI's response adheres to specified rules.

• Proposition: A declarative statement that is either true

or false, but not both. Each instruction or condition

within a prompt can often be framed as a proposition.

o Examples: "The output must be in English,"

"Summarize the text."

• Logical Operators:

o Conjunction (AND, ∧): True only if both

propositions are true. Represents multiple

simultaneous requirements.

o Disjunction (OR, ∨): True if at least one

proposition is true. Represents alternative

options or requirements.

o Negation (NOT, ¬): Reverses the truth value

of a proposition. Represents exclusions or

negative constraints.

o Implication (IF...THEN, →): If the first

proposition is true, then the second must

also be true. Represents conditional

instructions.

o Biconditional (IF AND ONLY IF, ↔): True

if both propositions have the same truth

value. Represents equivalence between

instructions or conditions.

• Quantifiers:

o Universal Quantifier (∀): "For all" or "for

every." Used to state that a property applies

to every element in a domain.

o Existential Quantifier (∃): "There exists" or

"for some." Used to state that at least one

element in a domain has a certain property.

2.3 Relations

Relations describe connections or associations

between elements of sets. During prompt formulation,

they help illustrate the connections between elements

such as instructions, context, limitations, and the intended

format of the output.

• Binary Relation: A set of ordered pairs (a,b) where

a∈A and b∈B. It indicates that element a is related to

element b.

• Domain: The set of all first elements in the ordered

pairs of a relation.

• Codomain: The set of all possible second elements in

the ordered pairs.

• Range: The set of all actual second elements in the

ordered pairs of a relation.

• Properties of Relations:

o Reflexive: If (a,a)∈R for every element a in

the set.

o Symmetric: If (a,b)∈R implies (b,a)∈R.

o Antisymmetric: If (a,b)∈R and (b,a)∈R, then

a=b.

o Transitive: If (a,b)∈R and (b,c)∈R, then

(a,c)∈R.

III. IMPLEMENTATION

3.1 Experimental Design

A comparative approach will be employed for a specific

task scenario requiring the AI to explain a technical

concept. Two distinct prompts will be formulated and

submitted to Gemini AI:

1. Intuitive Prompt (Pintuitive) :

A prompt crafted using conventional, unstructured

language, mimicking how a user might naturally phrase

the request without explicit consideration of discrete

mathematical principles. It serves as a baseline for

comparison.

2. Mathematically Structured Prompt (Pstructured) :

A prompt crafted by explicitly applying the principles of

set theory, logic, and relations.

Task Scenario:

The chosen task scenario is to explain the concept of

Linked List in C programming language to

informatics students in their second semester. The

explanation must include two simple analogies, be

presented in English, and be limited to a maximum of

200 words.

These prompts will then be submitted to Gemini AI using

model 2.5-flash for further analysis. While direct

submission via the Gemini AI Web API is an option, the

implementation process will use a Python program

integrated with a Google API Key. This approach is

chosen to ensure consistency, reproducibility, and a

systematic execution of the prompt.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Figure 3.1 Python code base for sending prompt to

Gemini AI

3.2 Prompt Construction and Implementation

For the chosen task scenario, both Pintuitive and Pstructured

will be developed, and their generation process will be

detailed.

A. Construction of the Intuitive Prompt (Pintuitive)

This prompt is formulated to represent a typical,

natural language request, without a structural

guidance from discrete mathematics.

• Pintuitive Text: Explain Linked List in C for 2nd-

semester informatics students. Provide 2 simple

analogies, ensure the output is in English, and limit it

to a maximum of 200 words.

B. Construction of the Mathematically Structured

 Prompt (Pstructured)

 The creation of this prompt is guided by the formal

 application of set theory, logic, and relations, aiming

 for maximal clarity and precision.

By formally representing each component of a

prompt, such as the intended role of the AI, the main

subject, the expected output elements, and any

explicit constraints, as a distinct group of attributes,

this framework helps reduce ambiguity. This

decomposition using set theory serves as a

fundamental step toward building prompts that are

more reliable, reusable, and adaptable, which in turn

improves the consistency and quality of AI-generated

content across various tasks.

1. Set-Theoretic Decomposition with Universal

Categories

The task's requirements are broken down into

distinct sets of elements, categorized by their

universal function within a prompt. This

approach allows for reusability across different

tasks by defining "slots" for specific types of

information.

• Role = The persona or role the AI should

adopt.

• CoreTopic = The central subject matter and

its key components.

• Audience = The intended recipients and

their understanding level.

• RequiredElements = Mandatory components

to be included in the output.

• OutputConstraints = Restrictions on the

output's form or content.

• Exclusions = Elements or styles that must

be explicitly omitted.

For the "Linked List" scenario:

• Role = {tutor_data_structure}

• CoreTopic = {linked_list_concept,

C_programming_language}

• Audience = {informatics_students,

semester_2_level}

• RequiredElements = {comprehensive

_explanation, two_simple_analogies}

• OutputConstraints = {English_language,

max_200_words}

• Exclusions = {} (no specific exclusions for

this prompt)

The complete prompt, Pscenario, is conceptually

represented as the union of these instantiated

sets: Pscenario = Role ∪ CoreTopic ∪ Audience ∪
RequiredElements ∪ OutputConstraints ∪
Exclusions.

2. Logical Formalization with Universal

 Operators

The relationships between these instantiated

elements are translated into logical propositions

and operators. This step emphasizes that the

logical structure (AND, OR, NOT, IF-THEN) is

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

universal, while the propositions themselves are

specific to the current task.

• Let R be the proposition representing the

Role assignment.

• Let T be the proposition representing the

CoreTopic explanation.

• Let Ademographic be the proposition ensuring

Audience suitability.

• Let RE1 and RE2 be propositions for each

specific RequiredElement

• Let OC1 and OC2 be propositions for each

OutputConstraint

• Let EXi be propositions for each Exclusion.

The logical structure of the prompt for the

"Linked List" scenario can be formalized as:

(R ∧ T ∧ Ademographic) ∧ (RE1 ∧ RE2 ∧ RE3) ∧
(OC1 ∧ OC2) ∧ (no EXi).

This pervasive use of conjunction (∧) explicitly

demands that all core explanation components,

both analogies, the language, and the word

count, must all be simultaneously satisfied. This

formalization ensures unambiguous instructions

and clearly enforces all constraints, minimizing

ambiguity in how the AI interprets the prompt.

3. Relational Mapping with Universal

 Relationships

 The interconnections and dependencies between

 prompt components are identified and mapped

 using universal types of relations, which apply

 across various prompts.

• applies_role_to: (Role, CoreTopic)

The AI's persona applies to the explanation

of the core topic.

• targets_to: (CoreTopic, Audience)

The explanation of the core topic is aimed at

a specific audience.

• contains_elements : (CoreTopic, Required

Elements)

The core explanation must contain the

specified required elements.

• governed_by: (CoreTopic ∪ Required

Elements, OutputConstraints)

The entire explanatory content, including its

components, is bound by output constraints.

• must_avoid: (CoreTopic ∪ Required

Elements, Exclusions)

Certain content must be excluded from the

generated output.

For the "Linked List" scenario:

• applies_role_to: (tutor_data_structure, linked

_list_concept)

• targets_to: (linked_list_concept, informatics

_students_semester_2_level)

• contains_elements: (comprehensive_

explanation, two_simple_analogies)

• governed_by: (explanation, Indonesian

_language), (explanation, max_200_words)

This mapping clarifies that the analogies are part of

the explanation, and the language/word count

constraints apply to the entire explanation, under the

specified role and for the target audience. For

example, if a Role applies to a CoreTopic, and the

CoreTopic needs to be targeted_to an Audience, then

the Role implicitly influences how the Audience is

addressed. This ensures internal consistency across

the entire prompt. This formal mapping helps

confirm that all constraints are properly linked to the

relevant parts of the output within a generalized

framework.

Therefore, the Pstructured Text become:

• Pstructured Text:

Act as a data structure tutor for 2nd-semester

informatics students. Comprehensively explain

the concept of Linked List in C programming

language. The explanation must include exactly

two simple analogies to aid understanding. The

entire output must be in English and have a

maximum length of 200 words.

IV. TESTING AND ANALYSIS

4.1 Qualitative Analysis of Results

After both Pintuitive and Pstructured has been constructed, the

prompts can be sent to Gemini AI using the python

program.

Figure 4.1 Python code for getting Gemini AI response

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The responses generated by Gemini AI for both the

intuitive (Pintuitive) and mathematically structured (Pstructured)

prompts were subjected to a rigorous qualitative

comparison based on the predefined criteria. The

experiment was conducted three times, and the results are

as follows:

• Response 1

Intuitive

A **Linked List** is a dynamic data structure where

elements are *not* stored contiguously in memory,

unlike arrays. Instead, each element, called a

node, contains two parts: its actual data and a

"link" or **pointer** to the *next* node in the

sequence.

The list begins with a special pointer, often called

`head`, which points to the very first node. The last

node in the list points to `NULL`, signifying its end.

In C, you typically define a `struct` for the node,

containing the data and a pointer to a `struct Node`

itself (e.g., `struct Node *next;`). This allows flexible

memory allocation and efficient insertions/deletions.

Analogies:

1. **Treasure Hunt:** Each clue card (node) tells

you where to find the *next* clue (pointer), until the

last card reveals the treasure (NULL/end). You only

need the first clue (head) to start.

2. **Chain of Paper Clips:** Each paper clip (node)

holds a piece of data and is linked to the *next* paper

clip. You hold the first clip (head) to hold the entire

chain.

Structured

A Linked List is a dynamic, non-contiguous data

structure where elements, called nodes, are linked

together using pointers. Unlike arrays, nodes aren't

stored sequentially in memory, offering great

flexibility.

In C, a node is typically a `struct` containing data and

a pointer to the *next* node:

```c 

struct Node { 

    int data;         // The actual data 

    struct Node *next; // Pointer to the next node 

}; 

``` 

The `next` pointer holds the memory address of the

subsequent node, forming a chain. The list's

beginning is accessed via a 'head' pointer.

Analogy 1: Imagine a treasure hunt. Each clue

(node) contains a piece of information (data) and

precise directions to the *next* clue. You follow this

chain of directions until the treasure is found.

Analogy 2: Or, consider a train. Instead of fixed

carriages, each carriage (node) carries its cargo (data)

and has a flexible coupling (pointer) that can attach to

any other available carriage, forming a custom,

extendable sequence.

This structure allows efficient insertions and

deletions anywhere, as you only update a few

pointers, unlike arrays which require shifting

elements.

• Response 2

Intuitive

A Linked List in C is a dynamic data structure where

elements are not stored contiguously like arrays.

Instead, each element, called a 'node', contains two

parts: the actual data and a 'pointer' (or reference) to

the next node in the sequence. The first node is called

the 'head', and the last node's pointer points to

`NULL`, signifying the list's end. This structure is

excellent for efficient insertions and deletions, as you

only update pointers, not shift elements.

Analogy 1: A Train. Each train car is a node,

carrying passengers (data). Each car is physically

connected to the next, forming a chain.

Analogy 2: A Scavenger Hunt. Each clue card is

a node, holding a riddle (data) and directing you to

the location of the *next* clue. You follow the chain

of clues until you find the treasure (NULL).

Structured

Welcome, students! A **Linked List** is a

fundamental linear data structure in C, storing

elements, called **nodes**, non-contiguously in

memory. Unlike arrays, nodes don't need adjacent

storage.

Think of it like a **scavenger hunt**: each clue

(node) gives you the exact location of the *next*

clue. You follow these clues one by one until you

find the final prize (the end of the list). The list

begins with a `head` pointer, pointing to the very first

node.

In C, a node is commonly defined using a self-

referential `struct`:

```c 

struct Node { 

    int data;           // The data stored in this node 

    struct Node *next;  // Pointer to the next node 

}; 

``` 


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

To access elements, you start at the `head` and follow

each `next` pointer sequentially until you reach a

`NULL` pointer, signifying the list's end.

Another analogy is a **paper chain**: each paper

loop (node) is separate but directly linked to the

next one. You can easily add or remove loops

anywhere without breaking the entire chain,

showcasing linked lists' efficiency for insertions and

deletions compared to fixed-size arrays. They offer

dynamic memory allocation, adapting size as needed.

• Response 3

Intuitive

A **Linked List** is a dynamic data structure where

elements, called **nodes**, are not stored

contiguously in memory like arrays. Instead, each

node holds two parts: your actual data and a pointer

to the *next* node in the sequence. This allows

flexible memory allocation, growing or shrinking as

needed. The last node's pointer is typically `NULL`,

marking the end of the list.

Analogy 1: Train Cars. Imagine a train where

each car is a node. It carries cargo (data) and is

physically coupled to the next car. To move through

the train, you follow the connections from car to car,

starting from the engine.

Analogy 2: Scavenger Hunt. Each clue card is a

node. It contains a puzzle (data) and, crucially,

directs you to the exact location of the *next* clue.

You don't know all locations beforehand; you

discover them step by step.

Structured

Alright class, let's demystify Linked Lists. Unlike

arrays, which store data contiguously, a **Linked

List** is a linear data structure where elements are

not stored at adjacent memory locations. Instead,

each element, called a **node**, contains two parts:

the data itself and a pointer (or reference) to the next

node in the sequence. The first node is the 'head'.

In C, we typically define a node using a `struct`, for

example:

```c 

struct Node { 

    int data; 

    struct Node *next; 

}; 

``` 

This `next` pointer is crucial. It's like a **treasure

hunt map**: each clue (node) tells you where to find

the *next* clue, leading you step-by-step to the final

treasure.

Another way to think about it is a **train**: each

carriage (node) holds passengers (data) and has a

coupling mechanism (pointer) that connects it

directly to the *next* carriage. You can easily add or

remove carriages anywhere without rebuilding the

entire train. This dynamic nature and efficient

insertions/deletions are key advantages over static

arrays.

4.2 Assessment Framework and Result Comparison

A. Evaluation Criteria Recap

For clarity, the responses were assessed based on:

• Precision and Clarity: How accurately and

unambiguously does the response address the

core concept (Linked List in C) and

associated details?

• Completeness: Are all specified components

present, particularly the two simple

analogies?

• Adherence to Constraints: Strict

compliance with the 200-word limit and

appropriateness for the target audience

(second-semester informatics students).

• Target Audience / Persona:

Appropriateness of content and tone for 2nd-

semester informatics students and adoption of

a "tutor" persona.

• Coherence and Consistency: Does the

explanation flow logically, and are the

analogies well-integrated?

B. Comparative Discussion

1. Precision and Clarity of Explanation

• Pintuitive (Responses 1, 2, 3): Consistently

provided accurate and clear definitions of

Linked Lists, nodes, data, pointers, head,

and NULL. All included a C struct

example, maintaining a good foundational

explanation.

• Pstructured (Responses 1, 2, 3): Demonstrated

equally high precision and clarity in

explaining the core concept. In Response 2,

it notably included "self-referential struct"

and mentioned malloc for dynamic

allocation, details commonly taught in C

programming courses for informatics

students. This indicates a more specific and

comprehensive explanation, directly

targeting the technical context of the

audience.*-

2. Completeness

• Pintuitive (Responses 1, 2, 3): Successfully

provided exactly two simple analogies in all

three responses (e.g., "Treasure Hunt" &

"Chain of Paper Clips" in Response 1;

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

"Train" & "Scavenger Hunt" in Response 2

and 3).

• Pstructured (Responses 1, 2, 3): Consistently

delivered exactly two simple analogies in

every response. This strict adherence

directly stems from the explicit logical

formulation within the structured prompt,

which specified "must include exactly two

simple analogies," leaving no room for

ambiguity in quantity.

3. Adherence to Constraints

• Word Count (Max 200 words): Both

prompt types showed excellent adherence.

All six responses were well within the 200-

word limit, demonstrating effective

constraint management by the AI.

• Language (English Output): All six

responses were consistently generated in

English, successfully fulfilling the explicit

language instruction in both prompt types.

This confirms the model's ability to adhere

to output language specifications when

clearly stated in the prompt.

4. Target Audience / Persona

This aspect most clearly highlights the

superiority of the structured prompt:

• Pintuitive (Responses 1, 2, 3): While

informative, the tone remained generally

descriptive. The responses provided factual

explanations of Linked Lists, but did not

explicitly adopt a teaching persona or

directly engage the target audience ("2nd-

semester informatics students") beyond

simply presenting the information.

• Pstructured (Responses 1, 2, 3): Consistently

demonstrated a stronger and more

deliberate effort towards fulfilling the

specified "data structure tutor" role and

addressing "2nd-semester informatics

students" directly. This was evident in

openings like "Welcome, students!"

(Response 2) and "Alright class, let's

demystify Linked Lists" (Response 3),

which were absent in intuitive responses,

showcasing the successful guidance from

the explicit role. Furthermore, the

instruction to "Comprehensively explain...

in C programming language" (from

CoreTopic) led to more nuanced C-specific

details, such as the mention of malloc and

self-referential struct in Response 2, making

the content highly relevant and directly

applicable for the target students.

5. Coherence and Consistency

• Pintuitive (Responses 1, 2, 3): The

explanations were logically sound, but

analogies were often presented as a

separate, distinct section under a

"Analogies" heading, sometimes feeling

appended rather than fully integrated into

the narrative flow.

• Pstructured (Responses 1, 2, 3): Demonstrated

superior coherence and consistency.

Analogies were often woven more

seamlessly into the explanation,

contributing to a better logical flow. For

example, in Response 3, the explanation

transitioned directly from discussing the

next pointer to "It's like a treasure hunt

map," followed by a smooth transition to

the next analogy and then linking back to

the advantages.

C. Discussion of Observed Benefits

The response comparative analysis clearly

substantiates the significant advantages of the

mathematically structured prompt over its intuitive

counterpart. By explicitly defining the AI's Role (e.g.,

"Act as a data structure tutor") and specifying the

Audience (e.g., "2nd-semester informatics students"),

by utilizing Relational Mapping with Universal

Relationships to dictate how these elements interact,

the structured prompt consistently guided the AI to

produce outputs more tailored in tone and direct

engagement, resulting in responses that felt genuinely

more instructional and well-suited for the target

learners. This precise definition also enhanced

contextual depth and specificity, as seen in the

inclusion of highly relevant details like malloc and

self-referential struct directly linked to CoreTopic for

C programming. Furthermore, the Logical

Formalization with Universal Operators ensured

the unambiguous fulfillment of specific requirements,

such as providing "exactly two simple analogies."

These consistent superior performance across

multiple responses highlights the robustness and

predictability of the structured approach,

transforming prompt engineering into a more

systematic and reliable process compared to less

formalized, intuitive methods.

V. CONCLUSION

The empirical assessment carried out using Gemini

AI clearly confirmed the effectiveness of the structured

approach presented in this study. Through comparative

analysis, it was consistently shown that prompts constructed

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

using set-theoretic decomposition produced markedly better

results in terms of accuracy, coherence, and contextual

relevance. Importantly, these structured prompts gave more

precise control over how the AI follows the assigned role,

generated content that was well-targeted for the intended

audience (such as informatics students studying C), and

incorporated analogies in a fluid and meaningful manner,

thereby improving the educational quality of the responses.

This structured technique also reduced ambiguity, helping

generate more consistent and reliable outputs from the

language model.

In summary, this research redefines prompt

engineering as a structured and scientifically informed

process, rather than relying solely on intuition. The set-

theoretic model proposed here can be a useful and flexible tool

for both developers and researchers in creating optimized

prompts for various use cases. Future research may explore

how this method can be applied to more complex tasks,

including those involving multiple types of input such as text

and images, therefore evaluating its scalability across different

LLM architectures, and building automated systems that

utilize this formal structure to streamline prompt creation and

refinement.

VI. APPENDIX

The complete source code used by the program to send prompt

to Gemini AI is available on GitHub. Access code repository

here: https://github.com/Hagon47/Gemini-AI-

API/blob/8e7f910f90e810a27d72e630198321048c829e5e/Ko

deMatdis.py.

VIDEO LINK AT YOUTUBE

Further explanations of the research are available in the video
link: https://youtu.be/_8ogG93CK6s

VII. ACKNOWLEDGMENT

The author would first like to express deep gratitude

to God Almighty for the strength, perseverance, and clarity of

mind that enabled the completion of this paper.

Furthermore, sincere appreciation is extended to Mr. Dr. Ir.

Rinaldi Munir, M.T., the lecturer of IF1220 Discrete

Mathematics, for his insightful guidance and unwavering

dedication to sharing knowledge, which has played a

significant role in the development and completion of this

work.

VIII. REFERENCES

[1] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-

Logika-2024.pdf (Accessed 16 June 2025)

[2] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025-2/02-
Himpunan(2025)-1.pdf (Accessed 16 June 2025)

[3] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025-2/03-
Himpunan(2025)-2.pdf (Accessed 17 June 2025)

[4] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/11-
Deretan,%20rekursi-dan-relasi-rekurens-(Bagian2)-2024.pdf (Accessed
17 June 2025)

[5] White, Jules, et al. A Prompt Pattern Catalog to Enhance Prompt
Engineering with ChatGPT. Vanderbilt University, 2023.
https://file.mixpaper.cn/paper_store/2023/681177f8-cd15-4e0f-a23b-
997c6b9f9dd2.pdf. (Accessed 18 June 2025)

IX. STATEMENT

I hereby declare that this paper is my own work, not a

paraphrase or a translation of someone else’s paper, and

definitely not plagiarism.

Bandung, 19 Juni 2025

Reynard Nathanael 13524103

https://github.com/Hagon47/Gemini-AI-API/blob/8e7f910f90e810a27d72e630198321048c829e5e/KodeMatdis.py
https://github.com/Hagon47/Gemini-AI-API/blob/8e7f910f90e810a27d72e630198321048c829e5e/KodeMatdis.py
https://github.com/Hagon47/Gemini-AI-API/blob/8e7f910f90e810a27d72e630198321048c829e5e/KodeMatdis.py
https://youtu.be/_8ogG93CK6s
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-Logika-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/01-Logika-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025-2/02-Himpunan(2025)-1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025-2/02-Himpunan(2025)-1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025-2/03-Himpunan(2025)-2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025-2/03-Himpunan(2025)-2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/11-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian2)-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/11-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian2)-2024.pdf
https://file.mixpaper.cn/paper_store/2023/681177f8-cd15-4e0f-a23b-997c6b9f9dd2.pdf
https://file.mixpaper.cn/paper_store/2023/681177f8-cd15-4e0f-a23b-997c6b9f9dd2.pdf

